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SUMMARY 

It has been proposed that by using predictive condition monitoring on historic data from an 
industrial steel reheating furnace there will be improved operational understanding, measurement 
robustness, and incipient fault detection that all together will lead to increased efficiency and 
productivity. This report discusses the initial analysis and system that has been developed to 
achieve a versatile predictive condition monitor. 
 
The findings demonstrate the ability to detect abnormal process events and identify subtle 
deviations from normal process behaviour. These abilities are delivered by a sophisticated 
multivariable model that gives robust predictions in the presence of highly correlated noisy 
production data. The analysis also covered the development of on-line predictions of 
environmental emissions, in particular NOx, and other important economic variables such as scale 
loss, production rate and specific energy consumption. These estimated parameters can be used 
to independently backup sensors or included as part of an enhanced control system. 
 
Accurate predictions of NOx, O2, scale loss, production rate and specific energy consumption 
have been obtained for Furnace 301. Where software based Predictive Emissions Monitoring 
System (PEMS) is used to monitor NOx (or any other environmental emission), a periodic 
relative accuracy test is usually required by the relevant government agency. Although PEMS are 



 

usually applied to real time data (as opposed to the averaged data analysed here), this report 
includes a typical relative accuracy calculation for the NOx prediction to illustrate the precision of 
the model which may now be used for further evaluation. 
  
The preliminary multivariable model developed for the furnace can be used to detect changes 
from normal operation. These changes may be considered as abnormal events, although more 
subtle changes in process behaviour and drift in analyser measurements may simply indicate wear 
and tear.  
 
The scope of work has been restricted to the RSTF campaigns from shifts 20020218 through 
20031704. This campaign has the largest number of samples (compared to VKVH, SPEC and 
KVLL). A comparison with traditional Univariate Statistical Process Control (SPC) gives a 
powerful demonstration of the improved sensitivity achieved through the use of the more 
advanced multivariate condition monitoring approach. 
    
Implementation of this predictive condition monitor would provide operational staff with a 
versatile tool for post production condition monitoring and NOx estimation. Especially the ability 
of the predictive condition monitor to determine which variables have contributed the most to a 
deviation from normality would in itself be extremely useful. Furthermore, process and analyser 
drift over consecutive campaigns would easily be detected, giving operational staff early warning 
before this leads to sub optimal production or a possible fault condition.  
 
Serious consideration should be given to the development of a predictive condition monitor and 
predictive emissions monitoring system based on real time data. 
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Data Driven Process Condition Monitoring of Furnace 
301 
 

1 Executive Summary 
 
It has been proposed that by using predictive condition monitoring on historic data from an 
industrial steel reheating furnace there will be improved operational understanding, measurement 
robustness, and incipient fault detection that all together will lead to increased efficiency and 
productivity. This report discusses the initial analysis and system that has been developed to 
achieve a versatile predictive condition monitor. 
 
The findings demonstrate the ability to detect abnormal process events and identify subtle 
deviations from normal process behaviour. These abilities are delivered by a sophisticated 
multivariable model that gives robust predictions in the presence of highly correlated noisy 
production data. The analysis also covered the development of on-line predictions of 
environmental emissions, in particular NOx, and other important economic variables such as scale 
loss, production rate and specific energy consumption. These estimated parameters can be used 
to independently backup sensors or included as part of an enhanced control system. 
 
Accurate predictions of NOx, O2, scale loss, production rate and specific energy consumption 
have been obtained for Furnace 301. Where software based Predictive Emissions Monitoring 
System (PEMS) is used to monitor NOx (or any other environmental emission), a periodic relative 
accuracy test is usually required by the relevant government agency. Although PEMS are usually 
applied to real time data (as opposed to the averaged data analysed here), this report includes a 
typical relative accuracy calculation for the NOx prediction to illustrate the precision of the model 
which may now be used for further evaluation. 
  
The preliminary multivariable model developed for the furnace can be used to detect changes 
from normal operation. These changes may be considered as abnormal events, although more 
subtle changes in process behaviour and drift in analyser measurements may simply indicate 
wear and tear.  
 
The scope of work has been restricted to the RSTF campaigns from shifts 20020218 through 
20031704. This campaign has the largest number of samples (compared to VKVH, SPEC and 
KVLL). A comparison with traditional Univariate Statistical Process Control (SPC) gives a powerful 
demonstration of the improved sensitivity achieved through the use of the more advanced 
multivariate condition monitoring approach. 
    
Implementation of this predictive condition monitor would provide operational staff with a 
versatile tool for post production condition monitoring and NOx estimation. Especially the ability 
of the predictive condition monitor to determine which variables have contributed the most to a 
deviation from normality would in itself be extremely useful. Furthermore, process and analyser 
drift over consecutive campaigns would easily be detected, giving operational staff early warning 
before this leads to sub optimal production or a possible fault condition.  
 
Serious consideration should be given to the development of a predictive condition monitor and 
predictive emissions monitoring system based on real time data. 
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2 Methodology 
 
Monitoring the overall condition of a reheating furnace is a significant challenge. Fundamentally 
we are trying to decide whether the furnace is behaving in a normal or abnormal condition.  
Normal in this sense simply means what operational personnel consider being normal or best 
operating practice and abnormal is any deviation from this. 
 
Historical operating data from normal periods are used to ‘fingerprint’ the process and all analysis  
stems from this fingerprint. As a first step traditional statistical process control (SPC) should be 
considered. This is very much a data driven approach and is a univariate approach since strictly 
speaking the process variables are assumed to be independent of each other and normally 
distributed. Charts such as Shewart, CUSUM or X-bar can be plotted. Empirical rules are used to 
identify patterns of behaviour in the charts that indicate abnormal behaviour – more commonly 
known as ‘special cause variation’ in SPC analysis – or process drift. The assumptions of 
normality and independence, coupled with the need for one chart per process variable, often 
result in failure when SPC is applied to real time continuous processes.    
 
A far more powerful technique is to develop a multivariable model of the process and monitor the 
errors between the predicted values of process variables and their measured values. This is 
predictive condition monitoring. Process interactions are taken into account by the multivariable 
model and robust models can be identified from highly correlated data using a Partial Least 
Squares (PLS) method. A single, composite, prediction error is calculated and a threshold placed 
on this value that reflects a high probability of abnormal behaviour. The operator now has just 
one value to monitor and the assumptions of independence and normality of process variables no 
longer apply.  
 
Of course, an accurate and robust model is central to the success of a predictive condition 
monitoring scheme. As this report demonstrates, such a model has been developed for Furnace 
301.      
 

2.1 Univariate Approach 
 
The univariate approach to process condition monitoring is to apply traditional SPC. Based on 
normal operation various charts such as Shewart, CUSUM or X-bar are constructed and 
appropriate limits calculated that indicate special cause variation. This approach is totally data 
driven. Our knowledge of the process is the set of limits that indicate special cause variation. 
When these limits are exceeded or certain patterns are observed in the process data as it is 
plotted on the SPC charts special cause variation, i.e. abnormal behaviour, is detected.        
 
We will restrict our attention to one of the most commonly used charts - the Shewart chart. The 
Shewart chart is simply a chart of a variable with limits of +/- 3 standard deviations around the 
mean value drawn on the chart. Movement of a variable within the standard deviation limits 
indicates normal, random, variation and is of no concern. Movement of the variable outside the 
limits is interpreted as a special cause of variation, i.e. abnormal behaviour. The underlying 
assumption is that the variable has a normal distribution, in which case 99.7% of samples will be 
within the +/- 3 standard deviations limits.     
 
The mean value and +/- 3 standard deviation limits are calculated from training data and remain 
fixed until they are re-calculated on new training data. Figure 1 shows Shewart charts for scale 
loss, O2 and NO x with standard deviation limits recalculated for each period of training data (i.e. 
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normal operation). During periods of test data the standard deviation limits remain at the values 
previously calculated as can be seen in Figure 2. In both Figure 1 and Figure 2 excursions outside 
the standard deviation limits are coloured in red for good data. Bad data are drawn to scale but 
ignored by  the Shewart chart analysis. 
 
 

 
Figure 1 – Shewart chart limits calculated from training data 

 
Figure 1 and Figure 2 show Shewart charts for just 3 variables. There are considerably more 
variables to consider, particularly variables that are manipulated in order to control the furnace 
such as air fuel ratios. To ensure a meaningful comparison with the predictive monitoring scheme 
described shortly, the same variables should be considered. Therefore, another 35 variables need 
to be considered (the prediction model described later for scale loss, O2 and NOx has a total of 
38 variables). These additional 35 charts are not presented here but have been taken into 
account in the comparison between the univariate and multivariate approaches described in the 
Analysis section. 
 

Training flag 
0 = train 
1 = test 

+/- 3 standard deviation limits re-calculated for 
each period of training data 

Scale loss 
V12, Kg 

O2 in waste gas 
V113, % 

NOx in waste 
gas 
V209, ppm 
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Figure 2 – Shewart chart evaluated for training and testing data 

 
 

2.2 Multivariate Approach 
 
In the multivariate approach we develop multivariable models that capture cause – effect 
relationships in normal operation. We compare predicted with actual behaviour and monitor the 
resulting difference. By placing appropriate limits on the prediction errors and observing patterns 
in the prediction errors we can infer the condition of the process. This is the essence of predictive 
condition monitoring.  
 
Identification of an accurate and robust model is of vital importance. The following section on 
Modelling describes the model developed for Furnace 301. The final part of this description, 
section 2.3.6, explains how prediction errors are interpreted to monitor the condition of the 
furnace.   
 

2.3 Modelling 
 
The training data has been revisited to gain a deeper understanding of the furnace. Calculated 
values in the training data were recomputed to be certain of their validity. Some minor errors in 
production rate and specific energy consumption were identified and corrected. The air fuel ratio 
for zone 1 was also fully computed (in the original training data this value was only computed 
over small sections of the data set). Roll temperatures (N, S and B) were found to have more 
missing values than actual values. 

Training flag 
0 = train 
1 = test 

Scale loss 
V12, Kg 

O2 in waste gas 
V113, % 

NOx in waste 
gas 
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Note that corrections to the training data have had little if any effect upon correlations that exist 
in the data. The multivariable models have been recomputed from the corrected training data. 
 

2.3.1 Changes to model variables 
This work is concerned with furnace operation during production. A number of process variables 
included in the original analysis and modelling relate to furnace operation during stoppage. While 
there may have been correlation between production and stoppage variables, it was felt that the 
stoppage variables should be excluded from the models. This was done with no discernable 
impact upon model accuracy. The stoppage variables removed from the model are listed in 
Appendix 1 – Modifications to Cause Effect Structure of Model.  Re-examination of the training 
data revealed that roll temperatures have a very high proportion of missing values and so are 
excluded from the model.  
   
The NOx value predicted in the original models is the un-normalised value 115.ME. This has been 
replaced by a normalised value V209, calculated as below: 

 
V209 Normalised NOx production = V115 * 16 / (21 – V113) 
 

The following effect variables are calculated values: % scale loss, production, total production 
rate, specific production rate, total energy consumption and specific energy consumption. All are 
non linear because they involve multiplication and/or division of other process variables. The 
degree of non linearity was found to be worst in %scale loss (V163) and total specific energy 
consumption (V162) and so these have been removed from the model structure. Accumulated 
scale loss (V12) in kg has been added to the model as an effect variable and total fuel 
consumption (V161) in kWh has been added to the model as a cause variable.  
 
Steam production and total steam production were modelled fairly accurately in the original data 
set. However, evaluation of the original model over unseen data gives extremely poor prediction 
of these variables, see Figure 3. As you can see the dominant feature of the steam production 
variables is their integrating nature. Integrating behaviour cannot be predicted by a steady state 
model and so these variables have been removed from the model structure. 
 

 
Figure 3 – Integrating behavior of steam production 

Bad data flag 
0 = good 
1 = bad 

Integrating 
behaviour 

Training 
period 

Furnace maintenance 
weeks 27-30 2002 

Shift number 
V1 

Steam 
production 
V204 

Total steam 
production 
V205 

31 Dec 2002 

1 Jan 2003 
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Gas and air temperatures located after the recuperator were declared as cause variables in the 
original model structure. These variables should be regarded as effect variables and so were 
moved to the effect side of the model. However, predictions proved to be inaccurate when the 
model was evaluated over the complete data set. This observation was repeated when the gas 
and air temperatures were also on the cause side of the model. Consequently these temperatures 
have been removed from the model.   

2.3.2 Model structure 
 
There is no change to the type of model, which remains as below: 
 
• Zero order dynamics with zero delays on all cause variables. I.e. a steady state model. 
• Absolute data format. 
• Multiple effect format. I.e. any effect variable is a function of all other effect variables in 

addition to being a function of the cause variables.  
• Partial Least Squares (PLS) identification 
 
The changes to the cause and effect variable structure as described previously give the new 
variable structure summarised in Table 3 in Appendix 1 – Modifications to Cause Effect Structure 
of Model. 
 

2.3.3 Model Accuracy 
   

Predictions of the effect variables declared in the model are illustrated in Figure 4. To the right of 
each trace are shown the maximum and minimum values of the measured variable. Overlaid on 
each trace in brown is the model prediction. The train / test flag shows which data is used to 
train the model and which data is used to test the model; a value of 0 indicates training data, a 
value of 1 indicates test data. Approximately half of the data is used to train the model.   
 
Outliers in the data set are excluded in the model training and testing – these are indicated when 
the bad data flag is 1. Mostly the outliers occur as isolated samples with the exception of a 
prolonged period of operation where both O2 and NOx are very high. This period could not be 
modelled successfully at all as the O2 and NOx respond very differently when compared to all 
other times.  
 
The model predictions are very good, with the exception of O2 where two periods show a 
sustained drift between the measured value and the prediction.  A closer look at the model 
predictions is shown in Figure 5. Here you can clearly see the drift in the O2 prediction. 
 
Production, total and effective production rates and effective specific energy consumption are 
calculated from other process variables within the data set. These values are very linear over the 
ranges calculated. As we might therefore expect the predictions of these calculated variables are 
more accurate than the predictions of NOx and O2. The  standard deviations of the prediction 
errors for the training and testing data are given in Table 1. Apart from O2, the model accuracy 
in the test data is similar to that in the training data. The reduced accuracy of O2 prediction in 
the test data is due to the periods of drift highlighted in Figure 4. The drift in O2 is discussed in 
section 3.1 - Detecting drift. 
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Figure 4 – Prediction of waste gas emissions and economic parameters 

 
 
 Prediction Error 
 Training data Test data 

(excludes training data) 
 Standard deviation Standard 

deviation 
/ range 

Standard deviation Standard 
deviation / 
range 

Scale loss  242 Kg 4.2% 337 Kg 6.4% 
O2  0.6 % 9.3% 0.9 % 16.2% 
NOx  9.2 ppm 8.6% 10.8 ppm 10.5% 
Production  31.5 Tonne 1.8% 33.9 Tonne 1.9% 
Total production rate  6.5 Tonne/hr 2.9% 8.3 Tonne/hr 3.4% 
Effective production rate  8 Tonne/hr 6.2% 11.5 Tonne/hr 6.8% 
Effective specific energy 
consumption  

11.8 kWh/Tonne 3.6% 16.2 kWh/Tonne 4.5% 

Table 1 – Prediction accuracy over training and test data with one model  
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O2 in waste gas 
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NOx in waste 
gas 
V209, ppm 
 
Production 
V160, T 

Total 
production rate 
V206, T/h 
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production rate 
V207, T/h 

Effective spec. 
energy cons. 
V208, kWh/T 

Train / Test flag 
0–train, 1-test 
 
Bad data flag 
0 = good 
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Figure 5 – Close up of model predictions 

 
So far model accuracy has concentrated on prediction of effect variables. In addition to the 
prediction of effect variables the PLS identification method employed by MonitorMV™ also 
estimates values of cause variables. For example Figure 6 shows typical estimates for a handful 
of variables over a region of test data. The cause variable estimates are overlaid in brown on the 
process values. The estimated values are determined from a reduced score model in a similar 
fashion to principal component analysis. As you can see the estimates are very accurate, helped 
by the fact that furnace operation gives rise to a high degree of correlation between cause 
variables. The ability to estimate cause variables is of great importance in condition monitoring as 
the breakdown of normal patterns of correlation is indicative of a change from normal behavior. 
 
 

Train/Test flag 
0–train, 1-test 

Scale loss 
V12, Kg 

O2 in waste gas 
V113, % 

NOx in waste 
gas 
V209, ppm 

Production 
V160, T 

Total 
production rate 
V206, T/h 

Effective 
production rate 
V207, T/h 

Effective spec. 
energy cons. 
V208, kWh/T 



 

Page 12 of 32 

 
Figure 6 – Typical cause variable estimates 

 

2.3.4 Non Linearity in effective production rate and effective 
specific Energy Consumption 

 
Effective production rate and effective specific energy consumption are calculated according to 
the formulae shown below. Although the resulting values are mainly linear over the ranges 
calculated, these are non linear functions as they involve division of one process variable by 
another and additionally, in the case of effective specific energy consumption, multiplication of 
process variables. As the predictive model is linear, we would expect to find reduced accuracy 
where the non linearity becomes pronounced – when production time and production are small. 
Fortunately this does not occur very often as we can see by looking at scatter plots of prediction 
error against production time and production, see Figure 7.    
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The samples circled in Figure 7 and all samples with a production value less than 200 T are now 
flagged as bad data and will be excluded in the analysis from here onwards. Note that the range 
of production values is approximately 1750 T, with a maximum value of about 1850 T. The 
exclusion of production values less than 200T therefore removes only a very small number of 
samples.   
 
Note that total production rate is also a non-linear calculated value [production/((production time 
+ stoppage time)/3600)] but the sum of production time and stoppage time is never small 
enough to cause a problem.   
 
 
 
 
 
 
 
Abnormal Events 
 
 
 
Process Condition Monitoring 
 
 
 
Sensor drift 
 
 
 
 
 

Figure 7 – Scatter plots of prediction error against production and production rate 

 

2.3.5 Scale loss, O2 and NOx model 
 
The effect variables we are modelling fall into two categories: measured values (scale loss*, O2 
and NOx) and calculated values (production, total and effective production rates and effective 
specific energy consumption). *Scale loss is a measured value in the sense that it is not 
calculated from other process variables in the data set.   
 
The first ten cause variables in Table 3 are associated mainly with the calculated values of 
production, total and effective production rates and effective specific energy consumption. 
Through a process of trial and error a small improvement in robustness was achieved for just 
scale loss, O2 and NOx by removing the calculated effect variables and these ten cause variables, 
leaving the cause and effect model structure in Table 4. Hearth area ratio was also removed from 
the variable structure. The accuracy obtained with this reduced model is shown below in Table 2. 
Comparing against the full model, see Table 1, you will see that prediction accuracy on the 
training data has actually been degraded slightly. However, the reduced model is a little more 
robust than the full model. I.e. the prediction errors for the test data and training data are closer 
to each other.     

 
 

Production (Tonne) 

0 

Effective specific energy consum
ption 

prediction error (kW
h/Tonne) 

 Effective production rate prediction error 
(Tonne/hr) 
 

Production time (Seconds) 

0 

0 1850 0 28800 



 

Page 14 of 32 

 Prediction Error 
 Training data Test data 

(excludes training data) 
 Standard deviation Standard 

deviation 
/ range 

Standard deviation Standard 
deviation / 
range 

Scale loss  277 Kg 5.2% 353 Kg 7.3% 
O2  0.6 % 10.3% 0.8 % 14.4% 
NOx  9.2 ppm 9.9% 10.1 ppm 9.9% 

Table 2 – Prediction accuracy over training and test data with scale loss, O2 and NOx 
model 

 

2.3.6 Interpreting Prediction Error 
 
With both cause estimate errors and effect prediction errors we can determine a lot about the 
condition of the process. We can now begin to infer the nature of a change from normal 
behaviour: 
 
Cause variable estimates OK, prediction errors in effect variables only.  
Normal patterns of correlation exist in the cause variables. This indicates that the process is 
being driven normally. The presence of prediction error in only the effect variables tells that one 
of three things is happening: 
 

1) Although the process is being driven normally it has been driven to a region where 
the model is not longer valid. There is nothing wrong with the process 

2) The process is behaving abnormally. Sudden and large errors may indicate an 
isolated event such as a fault whereas smaller persistent errors across several effect 
variables may represent process drift.  

3) There are faults in effect variable measurements. Persistent prediction error may 
indicate a problem in a measurement prone to drift/failure such as a thermocouple 
measurement or an analyser measurement. 

      
Errors in cause variable estimates, effect variable prediction errors OK. Normal patterns 
of correlation have broken down in the cause variables. This indicates that the process is being 
driven abnormally. Since the effect variable predictions are OK the process is, however, 
responding normally. This leads to one of the following conclusions: 
 

1) The process is behaving abnormally. Persistent error may indicate a change to new 
operating mode, sudden and large errors may indicate an isolated event such as a 
fault or unusual manual intervention.   

2) There are faults in cause variable measurements. Persistent prediction error may 
indicate a problem in a measurement prone to drift/failure such as a thermocouple 
measurement or an analyser measurement. 

 
Errors in cause variable estimates and effect variables predictions . Now we have the 
following possibilities: 
 

1) The model is invalid; there is nothing wrong with the process. Particularly when 
errors are observed in many variables. 
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2) The process is behaving abnormally. Where only a small number of cause and effect 
variables are affected the model may still be valid. Repeated patterns of prediction 
error could signify a genuine process problem.  

 
The above implies the need to monitor all of the individual estimation and prediction errors. 
Instead we can monitor a single overall Squared Prediction Error (SPE) that is comprised of the 
individual errors. From the training data a threshold value for the SPE is determined that 
indicates a high probability of abnormal process behaviour. Contributions to the SPE from 
individual variables are readily ranked in order, so that when the SPE threshold value is exceeded 
the affected variables are easily identified.  
 
Figure 8  shows the SPE value for the scale loss, O2 and NOx model and individual predictions for 
scale loss, NOx and O2. SPE values plotted in red indicate high probability of abnormal behaviour. 
As indicated there are three extreme peaks in the SPE value and three periods of persistently 
high probability of abnormal behaviour. The peak values correspond to abnormally large 
prediction errors in NOx and O2 – which also occur at high values of NOx and O2. The persistent 
periods correspond to drift between the O2 measurement and prediction.  
 
 
 

 
A   -   NOx prediction error -63 ppm, analyser measurement 161 ppm. 

O2 prediction error -1.9%, analyser measurement 8.4%. 
 
B   -  NOx prediction error -52 ppm, analyser measurement 156 ppm. 

O2 prediction error -1.9%, analyser measurement 8.9%. 
 
C   - NOx prediction error -37 ppm, analyser measurement 123 ppm. 

O2 prediction error -2.6%, analyser measurement 8.4%. 
 

Figure 8 – Squared Prediction Error (SPE) 
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2.3.7 Operating Modes and Product Types 
 
Large changes in the heat content and density of fuel are accompanied by changes in air fuel 
ratio. These changes are seen as distinct modes of operation by the multivariate model, as 
shown in Figure 9. This figure plots the first two score variables – the first two ‘artificial’ variables 
from the PLS model. In simple terms the score variables capture fundamental process behaviour 
and so clusters in the scatter plot indicate different operating modes.            
   

 
 
 

 
 

Figure 9 – Operating Modes 

 
Although the work presented in this report is focused on the RSTF product campaigns, initial 
analysis of all product types was undertaken. A single model for all product types was 
investigated, but did not show any distinct operational modes that could be identified by product 
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type. However, there are subtle differences in furnace operation between different product  types 
as a model for each product type proved to more accurate than an overall model for all product 
types.   
 
 

2.4 Conclusions 
 
Traditional SPC is a data driven approach. This is also a univariate approach since process 
variables are considered in isolation and strictly speaking they are assumed to be independent of 
each other and normally distributed. These assumptions are questionable in many industrial 
processes. Also, an unmanageable number of charts may be required to adequately cover the 
variables of interest.  
 
In contrast, a multivariate predictive approach uses a multivariable model to predict process 
behaviour. Process interactions are captured and robust models can be identified from correlated 
data. Assumptions of independence and normality of process variables are no longer required. 
Deviations from expected behaviour show up as prediction errors and a single overall composite 
prediction error is monitored to detect abnormal behaviour. This greatly reduces the monitoring 
task.   
 
Central to the success of a multivariate predictive approach is a robust and accurate model. Two 
models have been developed for furnace 301 using a PLS identification method, both of which 
are accurate and robust. The first model predicts scale loss, O2, NOx, production, total and 
effective production rates and effective specific energy consumption from 50 cause variables. The 
second model predicts just scale loss, O2 and NOx from 38 cause variables.  
 
Steam production and total steam production steadily ramp up over time. This integrating 
behaviour cannot be predicted by a steady state model and so these variables have been 
removed from the model. Gas and air temperatures located after the recuperator have also been 
removed from the model as accurate predictions could not be obtained against test data.   
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3 Analysis 
 
Recall the Shewart charts presented in Figure 2, which are repeated below in Figure 10. For a 
meaningful comparison with the multivariate predictive approach, there should be one chart for 
each process variable in the model. That is a total of 54 charts (or 38 charts for the scale loss, 
O2 and NOx only model). Monitoring such a large number of charts is not a trivial task.   
 

 

Figure 10 – Shewart charts evaluated for training and testing data 

 
Leaving aside the number of charts required by this univariate approach, do they detect any 
special cause variation, i.e. any abnormal behaviour? This question is answered in the following 
sections which compare the univariate and multivariate approaches over periods of long term and 
short term operation.    
   
 

3.1 Detecting drift 
 
Recall from Figure 4 that long term drifts were observed between the O2 measurement and the 
model prediction. The longest period of drift between the O2 analyser measurement and its 
prediction finishes abruptly where there is a gap in the data set between weeks 27 and 30 in 
2002. This also coincides with a step change in steam production as seen in Figure 11. These 
observations suggest that maintenance was carried out on the furnace between weeks 27 and 30 
in 2002. It is likely that the O2 analyser was recalibrated or cleaned and so the measurement 
falls back in line with the prediction when the furnace is started back up. This apparent drift in 
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the O2 measurement started in week 18 of 2002 and lasted for 9 weeks. By comparison the 
periods of sustained drift between the O2 analyser measurement and prediction hi-lighted in 
Figure 4 are not reflected in the Shewart chart for O2, Figure 10. In fairness a CUSUM or X-bar 
chart would be better suited to detecting a change in average O2 analyser measurement and 
may well do so in this case. However, even a more appropriate SPC chart cannot tell you whether 
a shift in the average O2 measurement is an intentional change in operating range or a change in 
process behaviour. By contrast predictive condition monitoring can make this distinction as O2 
predictions will remain accurate at the changed operating range (providing the model is still 
valid).  
 
 
 
 

 
 

Figure 11 – Drift in O2 measurement  
 

3.2 Detecting Abnormal Events 
 
Changing our focus toward short term special cause variation Figure 12 and Figure 13 illustrate 
SPC and predictive condition monitoring over a shorter period of 35 samples. To keep the SPC 
trend, Figure 12, as simple as possible the standard deviation limits are not shown. Instead, 
excursions outside the limits are simply circled in red. Also, all 38 Shewart charts have been 
examined and only the variables shown in Figure 12 exceed their limits as indicated over this 
time span. A solid red vertical line is also drawn to indicate when a limit is exceeded. Each 
instance is labelled A through J. 
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Figure 12 – Special cause variation according to single variable SPC 

 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 – Abnormal behavior according to Predictive Condition Monitor 
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The dotted vertical lines labelled ‘C’ and ‘E’ signify that all variables are within SPC limits but the 
predictive condition monitor, Figure 13, has detected abnormal behaviour. Estimates of each 
variable from the predictive condition monitor are also plotted in brown in Figure 12. 
 
Plotted in Figure 13 are a handful of cause variables in addition to the effect variables (scale loss, 
O2 and NOx). Estimated values of the cause variables and predicted values of the effect variables 
from the predictive condition monitor are drawn in brown. The cause variables shown are those 
that registered the largest estimation errors over the 35 sample window.    
 
Abnormal process behaviour is detected by the predictive condition monitor when the squared 
prediction error (SPE) exceeds a threshold value. These occurrences are circled in Figure 13, 
along with the variable(s) that contribute the most to the SPE. A solid vertical line is also drawn 
in red to indicate the event. The dotted red lines indicate where the process is behaving normally 
according the predictive condition monitor but special cause variation has been detected by the 
SPC charts. The vertical lines in Figure 12 and Figure 13 line up with each other. Therefore, 
events A and B are detected by both the SPC charts and the predictive condition monitor. Event 
C is detected by the predictive condition monitor but not the SPC charts. Event D is detected by 
both the SPC charts and the predictive condition monitor Event E is detected by the predictive 
condition monitor but not the SPC charts. Events F through I are detected by the SPC charts and 
not the predictive condition monitor. Event J is detected by both the SPC charts and the 
predictive condition monitor. So, what does this mean? Looking at each event in turn:  
 
• Events A and B: Both NOx and O2 increase significantly over two consecutive samples. The 

condition monitor does not predict these large increases and so flags abnormal behaviour 
over both samples. At the same time, the condition monitor does not detect any change in 
correlation between the remaining process variables – they are all estimated accurately. So in 
all other respects the furnace seems to be behaving normally. In contrast, the SPC charts do 
not detect any problem with O2 and only detect the high NOx value when it has exceeded its 
standard deviation limit. A low value of air fuel ration in zone 3 is detected.  

 
• Event C: O2 and NOx predictions deviate from analyser measurements, the prediction error 

in NOX this time is much smaller than previously. The SPC charts do no detect any problem 
as all variables are within limits. 

 
• Event D: The SPC charts detect that accumulated stoppage time is a special cause variation. 

The predictive condition monitor detects small deviations in average fuel rates to zones 1 and 
4.  

 
• Event E: Scale loss, O2 and NOx predictions deviate from process values. As in event C the 

SPC charts do no detect any problem as all variables are within limits. 
 
• Events F through I: The SPC charts detect special cause variation in a range of process 

variables. As Figure 12 and Figure 13 clearly show all process variables are 
predicted/estimated accurately by the condition monitor and so the process is behaving 
normally as far as it is concerned. 

 
• Event J: A high value of air fuel ratio in zone 2 is obviously detected by the SPC charts. The 

predictive condition monitor also detects a problem with the same variable as there is a 
significant estimation error for it. In addition the predictive condition monitor detects 
abnormal behaviour in the air fuel ratio for zone 1, the average fuel rate in zone 1, O2 and 
NOx. 
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3.3 Conclusions 
These observations demonstrate a subtle difference between the single variable SPC approach 
and the predictive condition monitoring approach. Single variable SPC is ab out detecting changes 
in single process values. In contrast, predictive condition monitoring is about detecting changes 
in correlations between multitudes of process variables. Changes in correlation indicate a change 
in process behaviour and lead to increased prediction error. As we have seen process behaviour 
can change while individual variables remain within SPC limits. Conversely, individual process 
values may well exceed SPC limits without affecting process behaviour. These observations lead 
to the conclusion that predictive condition monitoring is superior to the traditional SPC approach.    
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4 NOx Estimator 
 

4.1 Objectives 
 
NOx predictions from a computer model can be used to provide estimates of NOx more 
frequently than analyser measurements, even replaci ng analyser measurements in some 
situations. These are real time applications and more commonly known as Predictive Emissions 
Monitoring Systems or PEMS. PEMS are usually subject to strict accuracy requirements stipulated 
by government environmental protection agencies. The accuracy requirement is commonly a 
relative accuracy test.     
 
The data analysed in this report are average/accumulated values per campaign per shift and so 
the NOx predictions obtained from the models are not suitable for real time use. However, a 
relative accuracy test is carried out below to provide another measure of the accuracy and 
robustness of the NOx predictions obtained.   

4.2 Relative Accuracy Test for Predictive Emissions 
Monitoring Systems 

 
The NOx predictions are taken from the scale loss, O2 and NOx model. The relative accuracy is a 
measure of average prediction accuracy subject to a required confidence interval (e.g. 95% 
confidence) and is typically calculated as below. See Appendix 2 – Calculation of Relative 
Accuracy for a full description. 
 

limit emission  OR  value reference average
interval confidenceerror prediction average

Accuracy Relative
+

=  

 
The average reference value is the average value of the analyser measurement over the same 
period that the prediction error is averaged. Detailed performance specifications for PEMS are set 
out by the appropriate authorities. By way of example, a good description can be found on the 
American Environmental Protection Agency website http://www.epa.gov/ttn/emc/cem/pems.pdf. 
This performance specification sets a relative accuracy limit of 20%.   
 
The relative accuracy calculation described in the appendix has been applied using a sample size 
of 30. Figure 14 shows the relative accuracy calculated for the training data and test data using a 
moving window of 30 samples. From this plot we can see that the least accurate period of 
training data gave a relative accuracy of 11.7%. The test data peaks at fractionally over this 
value (12.0%), the vast majority of test data being comfortably inside 11.7% accuracy. We can 
safely conclude that the NOx prediction is robust – similar levels of accuracy are obtained with 
the testing and training data.  
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Figure 14 – Relative accuracy of NOx prediction 

 

4.3 Conclusions 
 
Although the NOx predictions do not relate to real time data it is encouraging to see an accuracy 
of 11.7% in light of a typical PEMS requirement of 20%.      
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5 Conclusions and Future Work 
 
 
This initial analysis has shown that a versatile predictive condition monitor can be developed for a 
steel reheating furnace. The findings have demonstrated the ability to detect abnormal process 
events and identify subtle deviations from normal process behaviour. In contrast, traditional SPC 
can fail to detect deviation from normality and conversely indicate special cause variation while 
the process is behaving normally. A subtle difference between the two approaches is that 
predictive condition monitoring detects changes in correlations between multitudes of process 
variables whereas SPC detects deviation in absolute values in single variables. These 
observations lead to the conclusion that predictive condition monitoring is superior to the 
traditional SPC approach 
 
The condition monitoring capability is delivered by a sophisticated multivariable model that gives 
robust predictions in the presence of highly correlated noisy production data. The variables 
predicted include environmental emissions, in particular NOx, and other important economic 
variables such as scale loss, production rate and specific energy consumption. These estimated 
parameters could be used to independently backup sensors or could be included as part of an 
enhanced control system.  
 
Although this analysis has been concerned with averaged/accumulated data per campaign per 
shift the NOx prediction has been shown to be robust and a high level of relative accuracy has 
been demonstrated. Relative accuracy is a commonly used performance measure of real time 
predictive emissions monitoring systems.  
 
Implementation of this predictive condition monitor would provide operational staff with a 
versatile tool for post production condition monitoring and NOx estimation. Abnormal events 
would not be captured in real time owing to the nature of the data upon which this analysis has 
been carried out. However, the ability of the predictive condition monitor to determine which 
variables have contributed the most to a deviation from normality would in itself be extremely 
useful. Furthermore, process and analyser drift over consecutive campaigns would easily be 
detected, giving operational staff early warning before this leads to sub optimal production or a 
possible fault condition.  
 
Serious consideration should be given to the development of a predictive condition monitor and 
predictive emissions monitoring system based on real time data. Some of the variables 
considered in this analysis may not be suitable for real time consideration such as production, 
total and effective production rates and effective specific energy consumption as they may be too 
variable over a short interval. However, this still leaves the analyser measurements and the large 
number of cause variables to monitor.    
 
Finally, repeatable patterns of prediction error that occur when abnormal behaviour is detected 
may indicate specific process issues. This idea merits further investigation as a possible 
diagnostic tool.   
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Appendix 1 – Modifications to Cause Effect Structure 
of Model 
 
 

Removal of stoppage variables 
 
 Effect variables removed: 

- V114 O2 in waste gas stop 
- V116 NOx in waste gas stop  
- V98  Air temp after recuperator stop 
- V104  Gas temp after recuperator stop 
 
Cause variables removed: 
- V169 Average fuel z1 stop  
- V171 Average fuel z2 stop   
- V173 Average fuel z3 stop  
- V175 Average fuel z4 stop  
- V177 Average fuel z5 stop  
- V179 Average fuel z6 stop  
- V181 Average fuel z7 stop   
- V183 Average fuel z8 stop 
- V185 Air fuel ratio z1 stop  
- V187 Air fuel ratio z2 stop   
- V189 Air fuel ratio z3 stop  
- V191 Air fuel ratio z4 stop  
- V193 Air fuel ratio z5 stop  
- V195 Air fuel ratio z6 stop  
- V197 Air fuel ratio z7 stop   
- V199 Air fuel ratio z8 stop 
- V100 Gas temp furnace stop   
- V102 Gas temp before recuperator stop 
- V120 FCE pressure stop 
- V157 sum cooling air recuperator stop 

 

Removal of roll temperatures 
 
 Cause variables removed: 

- V34  Roll temperature N  
- V37  Roll temperature S 
- V40  Roll temperature B   

 

Normalisation of NOx 
The NOx value predicted in the original models is the un-normalised value 115.ME. This has been 
replaced by a normalised value V209, calculated as below: 
 

Effect variable added: 
- V209 Normalised NOx production = V115 * 16 / (21 – V113) 
 
 
 



 

Page 27 of 32 

Removal of total specific energy consumption and % scale loss 
 

Effect variables removed: 
- V162 Total specific energy consumption 
- V163 % scale loss 

 
Effect variables added: 
- V12  Accumulated scale loss 
 
Cause variables added:  
- V161 Total fuel consumption 

 

Removal of steam production  
 

Effect variables removed: 
- V204 Steam production 
- V205 Total steam production 

 

Removal of temperatures after the recuperator 
 
 Cause variables removed: 

- V204 Steam production  
- V205 Total steam production 

 

Revised cause – effect model structure 
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Table 3 – Revised cause and effect variable structure 

Cause Variables Effect Variables 
V4 No. of slabs    
V5 No. of slabs north   
V6 No. of slabs south   
V201 % slabs north    
V202 % slabs south    
V203 % slabs both    
V7 Slab weight long   
V8 Slab weight short   
V9 Slab length long    
V10 Slab length short   
V11 % slab length    
V13 Hearth area ratio   
V14 Slab temp gradient 
V15 Extraction temp north   
V18 Extraction temperature south  
V21 Extraction temperature both  
V25 No of UV data    
V26 No. of UV data north   
V27 No. of UV data south   
V61 Accumulated production time  
V62 Accumulated stop time   
V167 % production time 
V168 Average fuel z1 production  
V170 Average fuel z2 production  
V172 Average fuel z3 production  
V174 Average fuel z4 production  
V176 Average fuel z5 production  
V178 Average fuel z6 production  
V180 Average fuel z7 production  
V182 Average fuel z8 production   
V184 Air fuel ratio z1 production  
V186 Air fuel ratio z2 production  
V188 Air fuel ratio z3 production  
V190 Air fuel ratio z4 production  
V192 Air fuel ratio z5 production  
V194 Air fuel ratio z6 production  
V196 Air fuel ratio z7 production  
V198 Air fuel ratio z8 production  
V99 Gas temp furnace production   
V101 Gas temp before recuperator production 
V109 Accumulated fuel meter production 
V110 Accumulated fuel meter stop  
V119 FCE pressure production   
V149 Sum nedstyr zone 1 recuperator production 
V151 Sum nedstyr zone 2 recuperator production 
V153 Sum fuel density 
V154 Sum fuel heat content 
V155 Sum fuel stochiometric value 
V156 Sum cooling air recuperator production  
V161 Fuel 

V12 Accumulated scale loss (kg) 
V113 O2 in waste gas production (%) 
V209 NOx in waste gas production (ppm) 
V160 Production (ton) 
V206 Total production (t/h) 
V207 Eff. production (t/h) 
V208 Eff. energy cons (t/h) 
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Cause – effect model structure for scale loss, O2 and NOx only 
 

Table 4 – Cause and effect variable structure for scale loss, O2 and NOx model. 

 

Cause Variables Effect Variables 
V14 Slab temp gradient 
V15 Extraction temp north   
V18 Extraction temperature south  
V21 Extraction temperature both   
V61 Accumulated production time  
V62 Accumulated stop time   
V167 % production time 
V168 Average fuel z1 production  
V170 Average fuel z2 production  
V172 Average fuel z3 production  
V174 Average fuel z4 production  
V176 Average fuel z5 production  
V178 Average fuel z6 production  
V180 Average fuel z7 production  
V182 Average fuel z8 production   
V184 Air fuel ratio z1 production  
V186 Air fuel ratio z2 production  
V188 Air fuel ratio z3 production  
V190 Air fuel ratio z4 production  
V192 Air fuel ratio z5 production  
V194 Air fuel ratio z6 production  
V196 Air fuel ratio z7 production  
V198 Air fuel ratio z8 production  
V99 Gas temp furnace production   
V101 Gas temp before recuperator production 
V109 Accumulated fuel meter production 
V110 Accumulated fuel meter stop  
V119 FCE pressure production   
V149 Sum nedstyr zone 1 recuperator production 
V151 Sum nedstyr zone 2 recuperator production 
V153 Sum fuel density 
V154 Sum fuel heat content 
V155 Sum fuel stochiometric value 
V156 Sum cooling air recuperator production  
V161 Fuel 

V12 Accumulated scale loss (kg) 
V113 O2 in waste gas production (%) 
V209 NOx in waste gas production (ppm) 
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Appendix 2 – Calculation of Relative Accuracy     
 
 
Define: 
 

id    difference between the analyser measurement and the predicted value for the ith sample.  

n    number of samples 
M  mean value of analyser measurement over the n  samples 

d    mean difference between the analyser measurement and the predicted value  

dS    sample standard deviation of the difference between the analyser measurement and the 
predicted value 

CI  confidence interval 
t  t-statistic 
RA  relative accuracy 
 
 
 
The mean and sample standard deviation are calculated as below: 
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To calculate the confidence interval the t-statistic t  is obtained from a table found in most 
standard statistical resources. The t  value is a function of the number of samples n  and the 
desired confidence. 95% confidence is required here in the NOx relative accuracy calculation. The 
t  value is the two-tailed value.    
 

n

S
tCI d=  

 
 

The relative accuracy is then calculated as follows. In some situations the emissions limit may be 

used in place of M : 
 
 

M

CId
RA

+
=  
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Appendix 3 – Calculated Variables 
 
The data set supplied for Furnace 301 contains 159 variables. The following additional variables 
were calculated: 
 

V160 ProduktionTotal V7*(V4-V5-V6) +V8*(V5+V6) Tonne 
V161 FuelEnergyTotal (V109+V110)*V153*V154 kWh 
V162 EnergyConsumptionProd  V162/V160 kWh/Tonne 
V163 Scale loss (%) 100*V12/V160/10 % 
V164 AverExtrTempDevN (oC)  V16/V5 oC 
V165 AverExtrTempDevS (oC)  V19/V6 oC 
V166 AverExtrTempDevB (oC) V22/(V4-V5-V6) oC 
V167 ProdTime V61/(V61+V62)*100 % 
V168 AverFuelZ1Prod V63/V61*60 Nm3/min 
V169 AverFuelZ1Stop V64/V62*60 Nm3/min 
V170 AverFuelZ2Prod V65/V61*60 Nm3/min 
V171 AverFuelZ2Stop V66/V62*60 Nm3/min 
V172 AverFuelZ3Prod  V67/V61*60 Nm3/min 
V173 AverFuelZ3Stop  V68/V62*60 Nm3/min 
V174 AverFuel Z4Prod  V69/V61*60 Nm3/min 
V175 AverFuelZ4Stop  V70/V62*60 Nm3/min 
V176 AverFuelZ5Prod  V71/V61*60 Nm3/min 
V177 AverFuelZ5Stop  V72/V62*60 Nm3/min 
V178 AverFuelZ6Prod  V73/V61*60 Nm3/min 
V179 AverFuelZ6Stop  V74/V62*60 Nm3/min 
V180 AverFuelZ7Prod  V75/V61*60 Nm3/min 
V181 AverFuelZ7Stop  V76/V62*60 Nm3/min 
V182 AverFuelZ8Prod  V77/V61*60 Nm3/min 
V183 AverFuelZ8Stop  V78/V62*60 Nm3/min 
V184 AirFuelRatioZ1Prod V79V63 dimensionless 
V185 AirFuelRatioZ1Stop V80/V64 dimensionless 
V186 AirFuelRatioZ2 Prod V81/V652 dimensionless 
V187 AirFuelRatioZ2 Stop V82/V66 dimensionless 
V188 AirFuelRatioZ3 Prod V83/V67 dimensionless 
V189 AirFuelRatioZ3 Stop V84/V68 dimensionless 
V190 AirFuelRatioZ4 Prod V85/V69 dimensionless 
V191 AirFuelRatioZ4 Stop V86/V70 dimensionless 
V192 AirFuelRatioZ5 Prod (V87/V71 dimensionless 
V193 AirFuelRatioZ5 Stop V88/V72 dimensionless 
V194 AirFuelRatioZ6 Prod V89/V73 dimensionless 
V195 AirFuelRatioZ6 Stop V90/V74 dimensionless 
V196 AirFuelRatioZ7 Prod V91/V75 dimensionless 
V197 AirFuelRatioZ7 Stop V92/V76 dimensionless 
V198 AirFuelRatioZ8 Prod V93/V77 dimensionless 
V199 AirFuelRatioZ8 Stop V94/V78 dimensionless 
V200 ProdTime V61/(V61+V62)*100 % 
V201 SlabsN V5/V4*100 % 
V202 SlabsS V6/V4*100 % 
V203 SlabsB (V4-V6-V5)/V4*100 % 
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V204 SteamProd (V123/V61)*3600 Tonne/h 
V205 SteamTotal ((V123+V124)/(V61+V62))*3600 Tonne/h 
V206 Total Production Rate V160/(V61+V62)/3600 Tonne/h 
V207 Effective Production Rate V160/V61/3600 Tonne/h 
V208 Effective Specific Energy Consumption V109*V153*V154/V160 kWh/Tonne 
V209 NOx normalised V115*16/(21–V113) ppm 

 
 
 
 
 
 
 
 
 
 


